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ABSTRACT 

The linearized  primitive  equations for a viscous barotropic fluid in a nonrotating  frame are used to investigate 
the  stability  properties  and  the  accuracy of several explicit finite difference approximations.  Four  different schemes 
are described and  their  qualities  examined.  For  two schemes the exact  numerical  solution  was  derived and com- 
pared  with  the  true  solution of the differential  system.  Actual  computations are performed and  the errors in phase 
and  amplitude  evaluated  to  test  the  theoretical  results. 
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1. BASIC EQUATIONS 
Because of the increasing application of the  primitive 

equations for numerically solving problems in meteorology 
and  oceanography, it seems worth while to examine the 
stability  properties  and  accuracy of various versions of 
finite difference approximations. As it would be too 
laborious to treat  the complete set of primitive equ a t' ions, 
a litlearized system,  in  one  space  variable,  for a baro- 
troiic atmosphere on a  non-rotating  earth was employed. 
This restriction is not too severe because the essential 
features are maintained when the  system  is  extended. 

The basic differential equations  are the following 

Physically u should be looked upon as being a velocity 
disturbance superimposed on a  constant basic flow U, 
and p as being proportional to  the  depth of the fluid. 
y is, the phase  velocity of gravity waves and A the co- 
efficient of lateral diffusion. y, A are  constants>O. 
The first term on the  right  hand side describes the ad- 
vection of the  quantities u and p due to  the basic flow, 
the second term defines the local changes which occur due 
to  the presence of gravity waves, and  the  third  term 
illustrat,es the dissipation  due to  friction.  Although 
it is physically incorrect t o  apply  a viscous term t o  the 
second equation-derived from the mass  conservation 
law-this has been done to gain  symmetry. In  this wa,y, 
the  system (1) can easily be written  in  characteristic 
form  by adding and  subtracting  both equations. We 
assume the  initial conditions 

t=O 

and a  periodicity  condition 

instead of boundary conditions. Then  the solution of 
(1) becomes 

where cl, U i y  and q ,  are  the  initial  amplitudes 
which might be complex. Thus  the solutions for u and 
p aie  built  up  by waves traveling  with phase velocities 
c1 and c2 into  the positive x-direction. The amplitudes 
of these waves decrease exponentially  with  time  due to fric- 
tional  dissipation.  General solutions for given initial 
conditions  can be obtained  by  applying  Fourier  es- 
pansion. Also the solutions of the finite difference 
approximation  can be represented by Fourier series. 
I n  order to  get an overall insight into the accuracy and 

stability of the various finite difference schemes, it is 
therefore sufficient to investigate the behavior of the 
solutions for different Fourier  terms. 

2. STABILITY 

Each solution of (1) has  the  property of giving waves, 
which decay  proportional to  esp ( - 4 A - 2 A t ) .  In  order 
to  be called numerically  stable  t'he  solution of ,z finite 
difference approximation t o  (1) should also consist 
of waves whose amplitudes do not grow with  time. 
Substituting a typical  Fourier  term 

into  the finite difference equations, the solution  for the 
time t=nAt, where n is the number of time  steps,  can 
be written 

($1;) is a  constant  vector describing the  initial ampli- 

tude. G is called the amplification matrix;  the elements 
of G depend on cI,2, A, L,  Ax, and At,  where Ax is the grid 
interval. To  get a stable numerical  solution  as stated 
above, G has  to be bounded. This  leads to  the von 
Neumann necessary condition for  stability,  namely, that 
the eigenvalues of G are  not allowed to exceed 1 in 
absolute  value  (Lax and  Richtmyer [4] ) .  Thus: 

/X1, 2 l  I 1  for all possible L (5) 

This condition mostly implies a specific choice of the 
parameters Ax and At. In  the following, several explicit 
finite difference approximations to (1) are  to be examined. 
Disregarding the friction  term that has been approximated 
only to  k s t  order accuracy, all schemes but  the first (the 
scheme In) possess second-order accuracy.  Staggered 
grids were used since they allow a better  approximation 
of space  derivatives than  the non-staggered grids. In the 
difference schemes Ia and Ib, u and p are prescribed at 
different grid  points  and different time levels. The form 
of the schemes I1 and I11 suggested another  type of 
staggering prescribing u and p at  the same  grid  points but 
shifting  these  points half a grid  interval  each  time  step. 
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FIGURE 1.-Arrangemcnt of grid points in the s,t-planc and values 
nccdcd to  compute ut'') and p3(n t3'2). 

It uses the following grid with respect to 2 nud t (fig. 1) : 
wvalues  are prescribed a t  even j and integer times, 
p-values are prescribed a t  odd j and half-odd-integer 

times. The principal  form of the finite difference approsi- 
mation Is was suggested by C. Leith (personal  communi- 
cation, 1963) for numeric:d experiments of the general 
circulation of' the  atmosphere.  Note that  the Ildvection 
terms Ci(dz~/bz),  U@p/bz) have bcen approximated 
through  quadratic  interpolation between  three  grid 
points by those  terms standing inside the  brackets. 
This interpol:l,tion is not  quite complete as will be outlined 
later. When starting  with known initial values P L ( O ) ,  p(O), 
the  above scheme  requires an estrapolation in time in 
order to  get  the  value p( ' / ' ) ;  this  can  be  done by applying 
a hnlf time  step procedure  initially. 

In actual  computations practically the  same  results 
were  obtninecl with a slightly different scheme in which 
2)(n+3/2)  :~nd  p("+'/') were replaced by pcn+l) and p ( " ) ;  this 
system  avoids the  initial  extrapolation.  Both schemes 
possess the  same  stability properties. Substituting a 
Fourier  term  into (Ta) the solution  can be  written 

The eigenvalues of G become. 

The necessary condition  for nurnerica,l stability is that 
(X,,21 docs not exceed one as was  outlined in section 2.  

UAt  
Ax 

If -= W would be zero, the absolute d u e  of XI ,z  

would be (Xl, 3 \  = 1 -4F2 2 1 provided 4F+ V 2  5 1. The 
same is true if yAt/Ax= V ounishes, then one  would 
obtain IX1.212= (1-441i;z)2-4TY2v4(1 -W2-4F)  51 if 2 F  
+ W 2  5 I.  Thus if either U or y is zero, the finite differ- 
ence scheme I n  is st2Lble under  appropriate conditions 

prescribing a specific relationship  between the  parame- 
ters A t  and A x .  As i t  is  difficult to give a closed expression 
for ( X l , z l  with respect to all possible wavelengths if both 
W and V are different from zero, we  will be satisfied to  

evaluate I X l , 2 1  forlong waves only, i.e., for v=sin - < < l e  

We:~ssur~~enlsothatFv2<<1,Vv<<1,Wv<<1,andobtain 

TAX 
L 

It is immediately  seen that our  scheme l a  gives esponen- 
tially growing solutions  with  time if friction  is neglected 
(F=O) since then I X 1 l > l  for W > O ,  i.e., U>O. If 
F f O ,  stability is only  retained if 2A>IU(yAt .  In  order 
to  satisfy this condition A has to  be  rather  large (>IOto 
cm.'  sec.") to allow for a reasonable  time step (>200  sec.) 
if, simulating  atmospheric conditions, lU/y  is in  the order 
of IOs cm2. set.-' Practical  computations,  the  results of 
which  will be discussed in section 6, proved  this fact. 
There,  instability also occurred  for  nearly  all shorter 
wave con~ponents when the  above condition was violated 
and was confined mainly  to  the  wave  with  phase velocity 
IU(+y. Also,  for  some short waves the  wave  with  phase 
velocity I UI - y  showed  slight instability. An exception 
to this is the  shortest  wave L = 2 A x ,  which is stable when 

A finite difference approximation to (1) that becomes 
unstable when friction  is  omitted  or  too  small is not 
acceptable. We shall therefore re-examinc our scheme 
with  the goal of eliminating the unfavorable stability 
condition and  arrive  eventually t i t  a stable scheme 
independent of the  magnitude of A. 

Evidently  the  terms  in  the  brackets of (Ta) should 
represent the advection of PL nnd 21 a t  the corresponding 
centered  time levels which shall be written IT76Zy+"" and 
W 6 F ~ n + 1 )  respectively. Since u a t  time (nj-3) At and p 
a t  time ( n + l ) A t  are  not given directly by the grid (see 
fig. 1) the fictitious values have been  denoted by Zii:n+.1/2) 
and $ ? + I ) .  Tt can be shown that a stable system according 
to (5 )  is  obtained if 6Zi:n+'/2'-and sinlilarly 6$y+')-is 
approximated by  the grid  point values $ ( 6 E ~ + 1 ) + 6 ~ j ' " ) .  
This  leads, however, to a partly implicit  scheme which is 
inconvenient to  handle; it shows, on the  other  hand,  that 
the shortcomings of the scheme Ia must  be  due  to an 
incorrect  approximation of the advection  terms  with 
respect to  the centered  time. T o  avoid an implicit 
scheme and  yet  arrive a t  a suficiently correct  approsima- 
tion we  follow  a procedure  suggested by Las and Wendroff 
[j] and espand and ??+I) into  Taylor series in 
time  retaining  only  those  terms which guarantee  the 
desired wcuracy.  This leads,  for emmple,  to ?i?+1/2)=Ey) 

2 ~ + 1 4 7 * + v 5 1 .  

tion to bu/bt in (1) which shall be espressed in the Eollow- 
ing way: 
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The second term on the  right-hand  side is not  evaluated 
a t  the  correct  time level nAt,  since p is not defined there, 
but this causes only a.n error of third  order  in At. 

The overall scheme  can now be ~ ~ r i t t e n  as follows: 

g ( n + l / Z )  3 ,  -uj " ( n )  -~W6uj")-[3V61p:"+~/2)-- :lis 2-(72) uj ] 

U : n + ~ ) = U j ( n ) - - ~ V ~ ~ ~ + 1 / 2 ) _ V ~ p : n + 1 / 2 ) + F ~ 2 U j ( n )  

~ ~ + l ) " ( n + l / 2 ) _ 1 W 8 p j ( n + 1 / 2 ) - [ ~ V ~ u : n + l ) - -  2 - ( n + l / 2 )  
- Pj :F6 Pj 1 

- P3 3 +ppp jn+1 /2 ) .  Ob) pjn+3/2)-  ( f l + l / z ) _ W 6 ~ ! n + l ) _ V ~ U j ~ ~ + I )  

This scheme has second order  accuracy  in At and Ax 
except for the  friction  terms which have  first order 
accuracy in At and second order  accuracy  in Ax. Re- 
ferring to  the x, t-diagram (fig. I), Cil;n+ll2) and f$'+') are 
to  be defined a t  the  same  points where p?+"" and u ~ + ~ '  
are given respectively. A very  similar scheme was 
desyribed by Richtmyer 1111 but  its  stability condition 
was not determined.  Another  investigation of this 
system by A. Iiasahara [2] can be found  in  this issue of 
the MonthZy Weather Review. 

The scheme Ib has been written as a two-step scheme, 

successively. This  way of representation  might be 
convenient if the  same  method is to  be adopted  for more 
complicated systems. We can, however, easily arrive 
a t  & one-step scheme by eliminating .ii and 5 in  the second 
and  fourth equations. In doing so for the second equa- 
tion,  for example, we obtain: 

where g i (n f l l 2 )  U(n+l)  , , 5(n+1), p(n+3/2)  have  to  be  evaluated 

@ + I )  =@) --I.T/'&-p ++W262@ 

+ +VU'S j 5 j  
2 ( n + 1 / 2 )  -+wF63z;n) -Vap !n+ll') $ p 6 2 t L j d .  

Compared  with the corresponding expression in  the 
original scheme, la, an additional second order  term 
+VW62jjy+1/2) appears.  Both schemes become identical 
only if the  terms  in  the  brackets  in  the  first  and  third 
equations of (l.b)  are  omitted. Note  that from the 
fields u ( ~ ) ,  p(n+1'2) the field can be  computed  and 
theW from the fields u(~+ ' ) ,  p ( n + 1 / 2 )  the field p(n+3 /2 ) .  

As it is still  very difficult to  give a closed expression 
of 1x1 for all wavelengths we shall again confine the 
computations t o  the long \vn.pe components.  This gives: 

If F is neglected in  the first  and  third  equations, this 
yields: 

In either case, it is  now possible, without  restrictive 
assumptions, to  attain  stability  at  least for long waves. 
If we neglect friction (F=O), and  then Ihl,zl does not 
exceed 1 when W2f VW< I., thus requiring that 

which is always possible to achieve. Including the friction 
will, for  proper values of F, even tend  to  improve  the 
stability. So far we have  no proof, however, that our 
scheme is stable or if the  stability  requirement above is 
valid for all wavelengths.  Numerical  computations of 
the eigenvalues for F=O, performed by  Dr. Kasahara, 
NCAR, revealed however that  the scheme 1.b is stable for 
all wave components and  that  the  shortest possible wave- 
length L=2Ax imposes the  most  restrictive  condition  for 
stability, requiring 

(For this wave the eigenvalues are  identical to  (6) with 
v = l  and p=O.)* Thus we can state  that for  vanishing 
F the scheme is stable if this  condition is met.  Including 
the  friction will probably  change  the  stability  requirement 
into : 

A A t  U A t  yAt  
Ax2 ( A x )  AX - 2-+ - +---<1. 

Examples of an actual  computation  with  the schemes In. 
and Ib will be given later  in section 6. 

I t  should be mentioned, however, that scheme Ib, 
modified for a nonstaggered  grid  in  space,  with both 
Z L ( ~ )  and p(n+1 /2 )  prescribed at, say, even j ,  might  not  be 
stable in the  same  range. r Tn this ctm, applyitlg the  same 
principles as before, it  seems reasonable t o  trnnsform the 
terms in  the second equation of (Ib), for extmple,  su 
thkl t : 

~ L : " i - l ) = u : " ) - ~ ~ 7 ~ ~ : " ) + + M 7 ' ~ ' , ~ L : " ) + ~ J / ~ ~ ~ 2 p j ~ ' l / 2 ) _ V ~ l j ~ + l / 2 l  

For simplicity, F has been neglected. Assunling again 
v<<l, the eigenvalues for this  system become: 

and  stability for long waves is obtained only if V< I WI < 
1, that is,  for  supersonic flow. The  same  result was 
derived by Kasahara [2] through  numerical  computation 
of the eigenvalues. 

'It would seem from an inspection of this  equation  that tho stability  condition  should road 2 (=) +(g)a<~ because this  results,  as can immediately be verified, U A t  2 

in I X 1 . 2 [ = 1 " 2  (Z)'<l. But  this condition is more  limiting  than  that  above. 
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4. SCHEME I I  (TWO-STEP  LAX-WENDROFF  SCHEME) 

Scheme 1.1 consists, similar t o  Ib, of two different steps 
and is called according to Richtmyer [12] the two-step ( n + ~ ) A f  
Lax-Wendroff scheme [ 5 ] .  In  its staggered  form it is 
identical to  the one-dimensional version of the scheme 
proposed by Phillips [9]. It is also closely related to  the 
system developed by Knox [3]. The finite difference 
equations take  the following form, 

j = O  2 6 
4 n + 1 / 2 ) = q d - " l  W6uj'" - +V&p(n)  + @'&P) 

FIGURE 2.-Arrangement of grid  points  in thc x, t-plane and values 
p p + 1 / 2 )  =ijp -+W@,jd -+V&@) ++F@jd needed to  compute P:"'"~' and uZ(nfl), pZ(n+". 

Ujn+l) 
-W&$z+l/Z -Vs ( n + 1 / 2 )  +Fpuj'n) P, 

u and p are given at  the same grid points  and  are  arranged 
according to  the x, t-diagram shown by figure 2. 

At half numbers of time  steps,  the grid points  have 
odd j ;  at whole numbers of time  steps j is even. In  the 
second step consisting of the two last equations of (11) 
the variables on the  right-hand side are  centered in time 
except for the frictional  term  and  are  approximated 
by the first step  in a similar way as in (Ib). In  the 
second step,  the  frictional term is not centered  in  time 
to  avoid an interpolation between four grid points, as 
in  the first st,ep; 

The exact solution can be obtained  quite easily for 
this scheme, as u and p are prescribed at  the same grid 
points. By adding and subtracting  the  equations for 
u and p one obtains  equations  in the variables (u*p) .  
Applying a  Fourier term,  the solution  after n time  steps 
becomes: 

damping  proportional to  C?, 2v4 and 0 5 1 - C?, < 1. This 
damping affects mainly the  shorter waves. To  investigate 
the influence of this artificial damping 011 the larger 
wave components, we assume v<<1.  Then after n time 

steps  the  relative  error  in  the  amplitude -- 
is : "-"*=e> a 

This eqression holds as long as n (+y<<1. If we 

again put F=O, then  C?,,=1/2 would  give the largest 
amount of artificial damping for the wave with phase 
velocity c ~ , ~ .  With this value, a relative  error ia the 
amplitude of 10 percent is reached after 20 time  steps for 
L/Ax=lO, after 320 time  steps  for L/Ax=20, and  after 

2si -2st 21r' - 1600 time  steps  for L/Ax=30. Thus  the artificial damping 
( ~ j ~ ) ~ p p : ~ ) ) = g ; " , , a ~ , z e  2=Igl,21nal.2e L n A G e  L 2 decreases quite rapidly-proportional to  (A~/L)~-with 

increasing wavelength. 
where Evidently  either increasing or decreasing the previously 

5 1 , 9 = ~ - ~ ( 2 F + C ~ , z ) ~ 2 - 2 i ~ ~ C , , z ( ~ " 2 F ~ 2 )  applied value of C;, 2 =  1/2 would result  in  a smaller error in 
the amplitude  for the same  number of time  steps. To be 

Ig1,z1~=(1-4F~~)~-4C:.2~~[1--~.z-4F~~(1"li j1~)1 able to  compnre the error at  a fixed time rather  than  after 

a fixed number of time  steps, we assume t lu t  Cl,2=- 

is changed by At only and that Ax and  are  kept con- 

~ 1 ,  zAt 
(10) Ax 

Here  the amplification matrix reduces to  the amplifica- stant. -For simplicity the frictional  term F is ignored. 

tion  factor g1,2, which is identical to  its eigenvalue X l , z .  If, as reference time, & = A t  is chosen, where At is the 
Since lgl ,zlal ,z=a~,z is the amplitude of the numerica.1 maximum time step  permitted to  retain  stability according 
solution which is  not allowed to grow with time, n neces- to  (11) (if A=O) and  the  actual  time  step is taken as 

# z 

sary  and sufficient condition for stnbility is that lgl,zl z 

= IX1,zi  5 1 according to ( 5 ) .  This  stability  requirement 
is fulfilled for erLcl1 possible L when 

At=pAt where O < p l l  ( l / p  is the number of time  steps 
needed to reach the time to), then  the  relative  error at  time 
to becomes: 

If F=O, i.e., if the  natural decay of waves  is neglected, 
it is  seen from (10) that there  remains  an artificial (13) 
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where 

(if U 2 0  then %=l, 

Here  the largest  error  is obtained if lj3. Further- 

more it is  seen that for a fixed time - +O if At+O and 

&=constant. 
To investigate the  phase differences between  the nu- 

merical and  true solution, we again  assume v < < l .  Then 

(3,. 2 

-nAtc?,a=-nAtcl,2 2a 2 r  
L L 1 

and  the  phase lag Aq=  -nAt( [c l - Ic* l )  after n time steps 2 r  
L 

becomes : 

Thus  the  phase velocity of the numerical  solution  is  smaller 
in absolute  value than  that of the  true solution  when 
c s 2 + 3 F < 1  and  depends on the wavelength.  Opposite 
to  the  true solution (4), the numerical  solution  creates dis- 
persive waves. If we neglect F and again  assume that 

only the  time  step is  diminished by At=pAt, we obtain  a 

phase  lag at  the time to= At of 

H 

rv 

Even if the error  in the  amplitude becomes small  for p+O, 
i.e., At+O according to (13), the  phase error  approaches 
its maximum  value. If, for example, U>O, then  it fol- 

lows from (11) (with A=O) that c=(U+-y)* z=l. If 

AflAx is chosen in  such  a  way that IC11=1/2, i.e., p=1/2, 
.then for L= 1OAx the relative  error  in  amplitude at to=Al 
would  be 0.75 percent and  the  phase  lag would  be 1.8'. 
Diminishing the  time  step  by one half gives p=1/4 and 
the errors for the  time to then become 0.41 percent and 
2.2', respectively.  Obviously  t,he  errors in  both ampli- 
tude  and  phase would  vanish if C,2= a,2= 1 ; but  this 
condition cannot  be satisfied for both waves if UZO. 

To refine only the time interval  may reduce the errors 
in amplitude. This leads, however, to increasing  errors 
in phase. If both F and  are  different  from zero, the 
best way to diminish the errors would  be to refine both 
the time and grid interval  such that ( A t / A s 2 ) ( A +  
4- ) =const. I 1. This expression is  derived 
from solving (11) with respect to At. As long as this 
relation is met when At and Ax are  made  smaller  and 
m e r ,  the  stability  requirement is automatically ful- 

z 
A t 2  

filled and  the  true solution  is  approached  in the limit 
At+O, h + O .  It is seen that as long as C ~ , ~ A ~ ~ > > A ~ ,  At 
a,nd Ax should be refined at  the same  rate, as  in the case of 
pure  hyperbolic  systems.  When becomes smaller 
than A2, At should be made finer and finer proportional 
to M, as  in the case of pure  parabolic  systems. 

We have seen that a wavelength  represented by 20 
grid  intervals  can be damped  artificially by 10 percent 
after 320 time  steps. If we, simulating  conditions  in 
numerical  weather  forecasting, take Ax=300 km., cl=300 
m. sec." and Ci=ji, then At becomes 700 sec. With 
L=20Ax=6000 km., this wave will be damped  artificially 
by 10 percent  after 2.6 days  and will have  a  phase  lag of 
33" (F  is assumed to be zero). 

It would have been more  desirable if this  damping were 
confined to  the  very  short waves (L<lOh) .  One could 
perhaps  think  that applying the second time  centered 
step of (11) several  times, say N times, before returning  to 
the  fist step would reduce the artificial  damping. If 
N=3, for example, we compute u( ' /~ ) ,  P ( ' / ~ )  from  the first 
step  and insert  these values into  the second step  to obta,in 
u(l), p " ) .  Now we continue to employ the  equations for 
the second step also to get the values of u ( ~ / ~ ) ,  p(3/2)  and 
u@), p @ )  and  then go back  to  the equations for the f i s t  
step  to  evaluate u ( ~ / ~ ) ,  ~ ( ~ f i ) .  Repeating  this  procedure 
leads to  the following errors  in  amplitude at  time t=nAt  
(F= 0). 

For N = 3  

For N = 5  

Whereas the original  scheme (N=l) yields, according 
to (10): 

If we assume G,2<ll the schemes with N = 3  and N= 5 
show a  smaller  damping than  the original scheme ( N = l )  
only  for  certain  short waves, whereas the  damping  is 
larger  for the  very long waves. Apparently for  increasing 
N and F=O there occur more and more places where 
( A U / ~ ) ~ , ~  becomes very  small or zero beginning at short 
wavelengths,  i.e.,  relatively  large values of Cf,zv2<1 and 
extending  gradually to longer waves so that for N W ,  
(Aa/a)l ,2+0 for  all  wave  numbers. Thus, if N is  small, 
there  is  no  improvement  from  applying  this  method because 
the  advantage of getting  rid of the  short waves-we shall 
explain later why this  might be  desirable-is lost  and the 
disadvantage of damping  the longer waves is mainhined. 
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If N - w ,  which means  in  practice  tha.t  except  initially 
only the two  last  equations of (11) are  used, the scheme 
obtained is called the leapfrog  scheme; it will  be investi- 
gated  in  the next  section. 

5. SCHEME 111 (LEAPFROG  SCHEME) 

Taking  the  two  last  equations of (11) for all  times 
(n=O, 1/2, 1, 3/2, . . .), except for the  starting  point 
where we apply  the first two  equations to get the values 
at t=+At lea.ds to  the so-called leapfrog scheme. This 
scheme is commonly used in  numerical  computations 
(see Miyakoda [7]). 

After a certain number of time  steps when the influence 
of the initial guess has practically  disappeared, the  numeri- 
cal  solution  becomes 

where 
g,,,=1.-4Fv~--2iC;,2v~l-(4F+~,z)vZ 

and 

The  stability condition is fulfilled when 

Then  the amplification  factor has  the absolute  value 

Ig1,21=l-4Fv2_<1. (18) 

Thus if the  natural  decay of waves is neglected, it is seen 
that  the leapfrog  scheme  contains  no  artificial  damping. 

For long waves v <  < 1 the relative  error  in the amplitude 
becomes 

and  the  phase  lag  is given by 

Compared  with  the corresponding  results of (12) and (14) 
for the Lax-Wendroff scheme, the  latter  has  about four 
times  larger  phase  errors; also, the errors  in the  amplitude 
are  larger. 

6. RESULTS OF  NUMERICAL  COMPUTATIONS 

Practical  computations were performed with. all schemes 
described  in the previous  chapters. In agreement  with 

(2), the  intial conditions  u(x,O)=cos -x, p(x, O ) = O  

were applied; i.e., al=az=l. The periodicity  conditions 

27r 
L 

765-58-5-2 

(3) were extended  to - (0, t)=- (L, t), - (0, t )  bkU  bkU dkP 
bJJ" bZ bscn 

" - 
b X* 

(L, t) (k=O, 1, 2, . . .) in  order to  get also those 

values of u  and p for x<O, x>L to which the numerical 
schemes refer. The exact  solution (4) also satisfies . 

these boundary conditions. u(7) and p$)  were computed 
from  the finite difference scheme  and  then u(;) fp';) was 
formed  and  compared  with  the corresponding  true solu- 

tion  which  is  simply cos - cl, 2t.e Lz e Since in  the ~ 27r 
L 

schemes Ia and  Ib  u  and p are  not given at  the same  grid 
points  and at  the  same time, a linear  interpolation  in 
both  time  and  space was  applied to  get  the desired 
value p$' .  Since one goal of this  paper is to simulate 
conditions  in  numerical weather prediction, the following 
parameters were presumed.  At=4X  102(2X lo2) sec., 
Ax=2X107 cm., U=5X103 cm., sec." +y=3X104 cm. 
sec.", A=108 cm2. sec.", which yields yAt/Ax= V=0.6 
(0.3), uAt/Ax=W=O.l  (0.05),  AAt/A2sF=0.001 
(0.0005). The values  in the parentheses  refer to  the 
scheme Ia. The errors a t  time t=4X104 sec. for dif- 
ferent  wavelengths  are  shown  in  tables 1 and 2. 

These results confirm what! was derived  theoretically be- 
fore. They show that for the  wave  with  phase velocity c1 
the numerical  amplitude  in  scheme Ia is  larger than  the 
true  amplitude  and also exceeds the  initial  amplitude al= 

1, since ]Xl[ in (7) is larger than one (lhl=1+2.8 (-t;>); 
for L=4Ax  (not  presented  in  table 1) also, the wave  with 
phase  velocity c2 becomes slightly  unstable.  The scheme 
Ib, however, is  stable for all  wavelengths  and  contains  a 

-4d - At 

Ax 

TABLE 1.-Errors in amplitude and phase (A?), at  1=4X10' 
sec. for different wavelengths L.  

-" 
Ia _ _ _ _ _ _ _ _ _  "2.60 250' -0.70 60' -0.15 

I1 ._______ 1 0.96 1 ;;XI: 1 0.36 1 W& 1 0.03 
Ib _ _ _ _ _ _ _ _  0.10 210" 0.03 40' 0.004 

111 """" 0.00  0.00 0.00 

"" 

8.4' 

0.76' 0.00 2.6" 
3.0' 0.005 10.V 
1.6' 0.00 5.5' 
2.8' -0.07 

TABLE 2.-Errors in amplitude ($)a and phase (Aq)z at  t=4X lo4 
see. for different wavelengths L.  

I 

I8 _____.___ 0.70 _ _ _ _ _ _ _ _  0.45 22' 0.14 4.4" 
ib _____.___ I 0.10 I "3' 1 0.03 1 i: I 0.004 1-0.05° 
I1 --......- 0.91 360' 0.29  0.02 11.00 
111 ........ 0.00 105' 0.00 0.00 2.70 

($)% (Ado 

" 

0.0s 

0.80 0.00 
3.40 0.004 

-00 0.00 
1.20 
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FIWJRE 3.-Comparison between  true  and  numerical  solution uo ( t )  for L= 1OAs. True  solution  (solid  curve), scheme Ia (dotted),  scheme Ib 
(dash-dot),  scheme I1 (long dashes), scheme I11 (short dashes). 

small artificial  damping  which  was already predicted by 
the eigenvalues (8). The wave  with  phase  velocity cp 
has  very  small  errors in  phase  and possesses a  numerical 
phase  velocity  which  is  larger than  the  true  phase veloc- 
ity; this is the only  case  where Ic*]>]c]. It should  be 
mentioned that in the schemes Ia  and Ib  the errors showed 
a tendency  to  oscillate  slightly  with  time. To obtain 
significant values, the errors  in  table 1 were interpolated 
linearly  in  time. 

For L=lOAx, figure 3 shows the various  solutions  for 
u at  x=O as a function of t .  The  parameters  have  the 
same  values as before. The  true solution u is composed 
by a superposition of two  waves with  phase velocities c1 
and c2 respectively.  Applying our conditions, this gives 

U(0, +(cos gut cos - y t  e Lz 
2= L 1 

We have selected in  our  example a time  interval  ranging 
from t=4X104 sec. to t=6X104 sec. 

The amplification of the scheme Ia  is not so obvious  in 
this example, as the initial  value of the  amplitude 
3(a1+a2)=1 is only exceeded by  about 10 percent. In  
another computation using a time  step of t=4X102 sec., 
as in the  other schemes, values of more  than  double  the 
initial amplitude  appeared  in  this  time  interval.  The 
solution of the Lax-Wendroff scheme is comparatively 
poor because the  magnitude of the  parameters C:=0.49, 
Ci=0.25 implies  relatively  large amplitude  and  phase 
errors  for the wavelength L=lOAx. The leapfrog  scheme 
I11 gives by  far  the best approximation  to the  true solu- 

tion. All schemes show, however, rapidly  decreasing 
errors  as the  wavelength increases. 

7. CONCLUSION 

Our  results  lead  to  the conclusion that  the leapfrog 
scheme is the most  accurate  one of all investigated  in this 
paper. In nonlinear  computations, however, the leap- 
frog  approximation  may develop the so-called nonlinear 
instability  (Phillips [SI), stemming  from  the  fact  that 
energy  transferred  from  longer to shorter waves is ac- 
cumulated at short  wavelengths  in  the  order of L=2Ax. 
As the leapfrog  scheme  contains no artificial  damping, 
this energy  cannot be removed if there is no,  or inadequate, 
frictional  dissipation. As Richtmyer [12] pointed out,  the 
artificial  damping of short  waves  incorporated in the  Lax- 
Wendroff scheme will probably  prevent  the  accumulation 
of energy at short  wavelengths  and  thus will give stable 
solutions also in  the nonlinear sense. 

Another  argument is that in  the leapfrog method  there 
may  appear  computational modes  different from the phys- 
ical  modes (Plataman [ l o ] ) .  In our linear  equations  these 
computational modes were excluded by a non-centered 
approximation of the initially  unknown  quantities ufI2), 
p f I 2 ) .  Numerical  integrations of the nonlinear  primitive 
equations  for  a  barotropic  atmosphere  performed by Phil- 
lips [9] with  the leapfrog  scheme  revealed  increasing trunca- 
tion  errors near boundaries;  these  errors were probably 
connected  with  the  computational modes  because they  did 
not  appear in a modified scheme which was  essentially the 
two-step Lax-Wendroff scheme in two  dimensions using 
Eliassen’s [l] grid. 
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From  these experiences it might  be  advisable to  prefer 
the Lax-Wendroff scheme I1 for nonlinear equations. The 
smaller accuracy of this scheme can be compensated for 
by a refined net. Our  results give some indication of the 
time  and  grid  intervals needed to gain a  certain  accuracy 
for a  certain wavelength. 

On the  other  hand, however, it is  also possible to force 
damping of short waves in  the leapfrog scheme. This  can, 
for  instance,  be accomplished by  the common smoothing 
techniques, by selective filtering using Phillips’ [SI method, 
or by applying appropriate  dissipative  terms.  Referring 
to the  latter, our “natural” second-order diffusion terms 
can be considered as such  a  means for damping waves. 
But corresponding higher order terms could  also enforce 
damping,  particularly of short waves. If, for example, 
terms  proportional to the finite difference approximation 
of dZmu/dxzm  and  bZmp/dxzm (m  = 1, 2, . . .) were added to 
the u-equation  and  p-equation respectively, then  the  am- 
plification factor (18) would contain an additional  term 
proportional to vZm. With  the proper sign and  proper 
coefficients, this  term implies a  damping which is the more 
confined to  short waves the larger m is. The influence on 
the phase lag in (20) would  be in the order of (~~AX/L)~“+’. 
Thus for sufficiently large m,  these terms  practically do 
not affect the longer waves, whereas short waves are 
eliminated. For m>2 this  method is more effective in 
damping  short waves than  the Lax-Wendroff method. It 
has, however, the  disadvantage that  the order of the dif- 
ference equations  and  thus the number of computational 
boundary conditions are raised. 

Second-order linear or nonlinear diffusion terms, 
which are moreover physically justified, have been 
applied in practically  all cases of numerical  weather 
predictions using the leapfrog approximation to  the 
primitive  equations  and they obviously did  prevent  the 
occurrence of nonlinear instability. Nonlinear diffusion 
terms were, for example, employed successfully by 
Smagorinsky [13] in his general circulation experiments. 
Also the artificial damping in the schemes Ib and I1 is 
basically produced by diffusion-like second order terms 
in  the difference system  with coefficients equal to  1/2Uz 
and l /2(  Uz+yz) respectively. This can be seen if the 
first  steps in  (Ib)  and (11) are  substituted  into  the second 
steps. 

The difficulties connected with  computational modes 
in  the 1  apfrog scheme which were, as already men- 
tioned, observed by Phillips [9] arose at  a  very special 
kind of boundary (near the overlapping  boundaries of 
the  Mercator  and  stereographic  grids).  Usually com- 
putational modes are suppressed by  an  appropriate 
initial  approximation of the dependent  variables at  time 
t=&At (Miyakoda [7]) .  Thus,  in principle, there 
seems t o  be no hindrance to  employing the leapfrog 
scheme also for nonlinear equations. 

The scheme Ib is the most efficient one because it 
tends always to use the  latest information  and  there- 

fore occupies relatively  small room in  the computer. 
(The leapfrog scheme requires about twice as much 
storage room.) It also contains  artificial  damping which 
is proportional to  W2v4 and  thus depends on the particle 
velocity of the flow. Unfortunately it was not possible 
t o  get  such  an  extensive  insight  into  the  behavior of this 
scheme as  in  the  other cases. In  our examples (table 1 
and fig. 3) the scheme Ib was more  accurate  than  the 
Lax-Wendroff scheme 11, but less accurate  than  the 
leapfrog scheme 111. 

The scheme Ia  is not to  be recommended because its 
stability depends merely on the  magnitude of the diffusion 
coefficient A and on the time step. 

Although  our examples are given for one space  variable 
only, the principal  features  are  maintained if the grid is 
extended to two space  variables x and y. In this case, 
neglecting the diffusion term,  the  stability  criterion for 
the schemes I1 and 111 should be changed to (lUl+y)z 

(zy2 112 where U is the scalar  particle velocity and 

As=Ax=Ay, the grid  interval.  Stability for the scheme 

Ibis probablpretained when 2 E ‘+&et<,. ( A S )  As - 
The extension of our staggered  grid for the schemes 

I1 and 111 to two space  variables  can  be done in essen- 
tially two different ways using either the already men- 
tioned Eliassen [l] grid system, where the  dependent 
variables are staggered  in  space too, or the more straight- 
forward  method proposed by Lilly [6], where all de- 
pendent  variables are  kept at  the  same  grid  point  in  the 
x,y-plane. There  are also no difficulties in  adopting  the 
grid applied for the scheme Ib  to two  space  variables. 
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